Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5589, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696833

RESUMO

We report three highly efficient multiresonance thermally activated delayed fluorescence blue-emitter host materials that include 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (DOBNA) and tetraphenylsilyl groups. The host materials doped with the conventional N7,N7,N13,N13,5,9,11,15-octaphenyl-5,9,11,15-tetrahydro-5,9,11,15-tetraaza-19b,20b-diboradinaphtho[3,2,1-de:1',2',3'-jk]pentacene-7,13-diamine (ν-DABNA) blue emitter exhibit a high photoluminescence quantum yield greater than 0.82, a high horizontal orientation greater than 88%, and a short photoluminescence decay time of 0.96-1.93 µs. Among devices fabricated using six synthesized compounds, the device with (4-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)phenyl)triphenylsilane (TDBA-Si) shows high external quantum efficiency values of 36.2/35.0/31.3% at maximum luminance/500 cd m-2/1,000 cd m-2. This high performance is attributed to fast energy transfer from the host to the dopant. Other factors possibly contributing to the high performance are a T1 excited-state contribution, inhibition of aggregation by the bulky tetraphenylsilyl groups, high horizontal orientation, and high thermal stability. We achieve a high efficiency greater than 30% and a small roll-off value of 4.9% at 1,000 cd m-2 using the TDBA-Si host material.

2.
ACS Appl Mater Interfaces ; 9(47): 41413-41420, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29111658

RESUMO

A series of indolo[3,2-b]indole (IDID) derivatives are designed as a novel structural platform for thermally activated delayed fluorescence (TADF) emitters. Intramolecular charge transfer (ICT)-type molecules consisting of IDID donor (D) and various acceptor (A) moieties are synthesized and characterized in the protocol of the systematical structure-property correlation. IDID derivatives exhibit high efficiency, prompt fluorescence as well as TADF with emission ranges tuned by the chemical structure of the acceptor units. Interestingly, almost all of the IDID derivatives show an identical energy level of the lowest triplet excited state (T1) attributed to the locally excited triplet state of the IDID backbone (3LEID), while that of their lowest singlet excited state (S1) is largely tuned by varying the acceptor units. Thus, we demonstrate the underlying mechanism in terms of the molecular engineering. Among the compounds, Tria-phIDID and BP-phIDID generate efficient delayed fluorescence based on the small energy gap between the lowest singlet and triplet excited states (ΔEST) and mediation of the 3LEID state. Organic light-emitting diodes with these Tria-phIDID and BP-phIDID as a dopant in the emitting layer show highly efficient electroluminescence with maximum external quantum efficiencies of 20.8% and 13.9%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...